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Abstract The set of smooth equilibrium solutions of a kinetic model for cometary flows is
split into equivalence classes according to similarity transformations. For each equivalence
class in the two- and three-dimensional cases a normal form is computed. Each such equi-
librium solution gives rise to an explicit solution of the compressible Euler equations for
monatomic gases. The set of these solutions is discussed with special emphasis on solutions
containing vacuum regions.
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1 Introduction and Main Ideas

We consider the kinetic transport equation

∂tf + v · ∇xf = Q(f ) = Puf
(f ) − f, (1)

where

Puf
(f ) = 1

|Sd−1|
∫

Sd−1
f (uf + |v − uf |ω) dω

for a nonnegative particle distribution function f (t,x,v) depending on time t ∈ R, posi-
tion x in a domain � ⊂ R

d , and velocity v ∈ R
d , d ≥ 1, where Sd−1 and |Sd−1| denote

the unit sphere in R
d and its surface, respectively. The collision operator Q(f ) is an ap-

proximative model for the scattering of cosmic rays (energetic particles) in an astrophysical
plasma, caused by random irregularities in an ambient field [6, 14–16]. The collisions tend
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to isotropize the velocity distribution around the particle mean velocity uf (t,x) which, to-
gether with the mass density ρf (t,x) and the specific internal energy ef (t,x) is given by

ρf =
∫

Rd

f dv, ρf uf =
∫

Rd

vf dv, ρf ef =
∫

Rd

|v − uf |2
2

f dv. (2)

More precisely, the null set of the collision operator Q consists of all distributions of the
form f (v) = F(|v − u|2/2), where F is an arbitrary function of one variable and u an
arbitrary vector. The collision invariants of Q are v, and all functions of the form φ(|v −
uf |2/2). Among them, only 1, v, and |v|2 = |v − uf |2 + v · uf − |uf |2 are independent
from the distribution function and, thus, lead to the macroscopic conservation laws of mass,
momentum, and energy, respectively:

∂tρf + ∇x · (ρf uf ) = 0,

∂t (ρf uf ) + ∇x ·
(∫

Rd

v ⊗ vf dv
)

= 0, (3)

∂t

(
ρf ef + ρf

|uf |2
2

)
+ ∇x ·

(∫
Rd

v
|v|2
2

f dv
)

= 0.

The hydrodynamic limit of (1) (i.e. the limit ε → 0 after rescaling t → t/ε and x → x/ε)
has been investigated in [2, 3]. Formally, the particle distribution converges to a function f0

of the form

f0(t,x,v) = F

(
t,x,

|v − u(t,x)|2
2

)
, (4)

and evolution equations for F(t,x, ξ) and for u(t,x) can be given. Essential for the results
of this work is the observation that these evolution equations contain the above conservation
laws as a closed subsystem, i.e., for distribution functions of the form (4), the momentum
and energy fluxes can be computed in terms of the mass, momentum, and energy densities:

∫
Rd

v ⊗ vF dv = ρF uF ⊗ uF + pF Id,

∫
Rd

v
|v|2
2

F dv = ρF uF

(
eF + |uF |2

2

)
+ pF uF ,

with pF = (γ − 1)ρF eF and γ = (d + 2)/d . With these closure relations, (3) are the com-
pressible Euler equations for a monatomic gas. Other basic equations of fluid mechanics,
such as the incompressible Navier–Stokes equations, are also contained in (1) as a singular
limit [11]. For an existence theory see [4, 7].

The other crucial ingredient of this work is the identification of all smooth equilibrium
solutions of (1) carried out in [7], where an equilibrium solution is a solution of (1) satisfying

∂tf + v · ∇xf = Q(f ) = 0. (5)

In [7], the motivation for studying (5) was the long time behaviour of solutions of (1). Here
we are particularly interested in exploring the fact that solutions of (5) give rise to solutions
of the compressible Euler equations.
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The results of [7] correspond to those of Desvillettes [5] for the gas dynamics Boltzmann
equation. Every smooth solution of (5) can be written in the form

f (t,x,v) = ψ(α(t)ξ(t,x,v) + g(t,x)), (6)

with

α(t) = at2 + 2bt + c, (7)

ξ(t,x,v) = 1

2
|v − u(t,x)|2, (8)

g(t,x) = 1

2α(t)
xT ((ac − b2)Id + �2)x

+
(

A + 1

α(t)
(� − at − b)(At + B)

)
· x − 1

2α(t)
|At + B|2, (9)

u(t,x) = 1

α(t)
(�x + (at + b)x + At + B). (10)

In (6–10), ψ is an arbitrary function of one variable. Also the scalars a, b, c ∈ R, the vectors
A,B ∈ R

d , and the skew symmetric matrix � ∈ R
d×d can be chosen arbitrarily. The gas

dynamics case is included considering ψ as the exponential function. Here, also compactly
supported ψ can be chosen, giving rise to solutions including vacuum regions.

From (6–8) it is obvious that Q(f ) = 0 holds. On the other hand, the argument of ψ can
also be written as

α(t)ξ(t,x,v) + g(t,x) = a

2
|x − vt |2 − bv · (x − vt) + c

2
|v|2

+ A · (x − vt) − B · v − vT �(x − vt),

showing that f also solves the free transport equation ∂tf + v · ∇xf = 0 (since it depends
on t and x only in the combination x − vt ).

For the computation of moments of distributions of the form (6–10), the behaviour of
α(t) has to be taken into account. At zeroes of α(t), the distribution is independent from the
velocity and moments do not exist in general. Therefore we restrict the following discussion
to time intervals where α(t) does not change sign and assume α(t) > 0. This is no restriction
since the sign of α(t) can be absorbed in the definition of ψ . All moments up to the energy
flux can then be computed if ψ decays sufficiently fast, such that integrals of the form∫ ∞

η0
η(d+1)/2ψ(η)dη exist. In particular, a straightforward computation gives

ρ(t,x) = −α(t)−d/2φ′(g(t,x)), (ρT )(t,x) = α(t)−1−d/2φ(g(t,x)),

for the temperature T = 2
d
e, with

φ(g) = |Sd−1|
d

∫ ∞

0
(2η)d/2ψ(η + g)dη. (11)

It is easily checked that ρ and T , together with the velocity u given by (10) solve the com-
pressible Euler equations for an arbitrary decreasing profile φ, not necessarily coming from
a kinetic profile ψ through (11). This provides a large class of explicit solutions for the
compressible Euler equations.
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The outline of the rest of the paper is the following: in Sect. 2, we classify the set of equi-
libria (6–10) for d = 2,3 according to the rank of the matrix in the quadratic form (9). More
precisely, we identify equivalence classes under the symmetry group of the Euler equations
(contained in the symmetry group of the cometary flow equation). For each equivalence
class a normal form is given.

The classification for d = 3 is visualized in terms of the geometry and the dynamics of
the level sets of the function g(t, ·) in Sect. 3. In particular, for profiles φ with compact
support these level sets can be boundaries of vacuum regions.

In Sect. 4, the map (11) from the kinetic profile ψ to the macroscopic profile φ is in-
verted. Finally, several types of explicit solutions for the 3D compressible Euler equations
are discussed in Sect. 5.

2 Classification of Equilibrium Solutions

The compressible Euler equations, the cometary flow equation, and the class (6–10) of equi-
librium solutions are invariant under shifts in time and position, under Galilei transforma-
tions, under rotations and under certain rescalings of position and time. In the following we
list the corresponding transformations and their effect on the parameters a, b, c,A,B, and
� in (7), (9) and (10).

S1. Time shift The transformation t → t + t0 leaves the parameters a,A, and � unchanged
and leads to

b → b + at0, c → c + 2bt0 + at2
0 , B → B + At0.

S2. Galilei We combine a shift in position with a Galilei transformation in x → x+x0 +v0t ,
v → v + v0, u → u + v0. This leaves a, b, c, and � unchanged and leads to

A → A + ax0 + (� − b)v0, B → B + (� + b)x0 − cv0.

S3. Rotation The transformation x → Rx, v → Rv with R−1 = RT leaves a, b, and c un-
changed and leads to

A → RT A, B → RT B, � → RT �R.

S4. Rescaling The transformation (t,x,v) → (k2t, k1k2x, k1v) with k1, k2 ∈ R\{0} leads to

a → k2
1k

2
2a, b → k2

1k2b, c → k2
1c,

A → k1k2A, B → k1B, � → k2
1k2�.

From now on, ‘invariant’ means ‘invariant under transformations of the forms S1–S4’.
In the following, the above transformations will be used to simplify (6–10). As an example,
we consider the case, where the matrix (ac − b2)Id + �2 in the quadratic form g (see (9)) is
invertible (an invariant property). Then after the transformation S2 with

x0 = −((ac − b2)Id + �2)−1(cA + (� − b)B),

v0 = −((ac − b2)Id + �2)−1((� + b)A − aB),

we have A = B = 0. Now we consider the two- and three-dimensional situations in more
detail.
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2.1 The Three-Dimensional Case

Our main classification criterion is the invariant rank of the matrix (ac − b2)Id + �2. We
start with the invertible case rank((ac − b2)Id + �2) = 3. As mentioned above, a S2-
transformation can be used to eliminate A and B. The second step is a rotation (S3) to
change the skew-symmetric matrix into

� =
(0 0 0

0 0 λ

0 −λ 0

)
, (12)

such that the matrix-vector product can be written as �x = x × L with L = (λ,0,0). It is
easily seen that (in 3D) the invertibility of (ac−b2)Id+�2 is equivalent to 0 
= ac−b2 
= λ2.

For the next step we split into two subcases: If a 
= 0 holds (another invariant property),
then we use a time shift (S1 with t0 = −b/a) to eliminate b. Then c 
= 0 holds by the
invertibility of (ac−b2)Id+�2 and rescaling (S4) can be used to produce a = 1 and |c| = 1.

In the other subcase a = 0, b 
= 0 follows from the invertibility of (ac−b2)Id+�2. Now
a time shift (S1 with t0 = −c/2b) eliminates c, and a rescaling produces b = 1.

In both subcases, a common factor is absorbed into the profile ψ to make α positive.
Explicitly the transformations for the subcases a 
= 0 and a = 0 read as

t → |c|
|a|3/2

(at − b), x → a

|a|3/2

(
Rx + x0 + v0|c|

|a|3/2
(at − b)

)
, v → Rv + v0√|c| ,

t → 1

b2
(bt − c), x → 1

b

(
Rx + x0 + v0

b2
(bt − c)

)
, v → Rv + v0,

where R is chosen such that � is given as in (12) and where x0 and v0 are set as above. They
lead to the two normal forms:

Normal form type 3a: parameters: λ ∈ R, |c| = 1, c 
= λ2

α(t) = |t2 + c|,

g(t,x) = cx2
1 + (c − λ2)(x2

2 + x2
3 )

2|t2 + c| ,

u(t,x) = tx + x × L
t2 + c

, L = (λ,0,0).

Normal form type 3b: parameter: λ ∈ R

α(t) = 2|t |,

g(t,x) = −x2
1 − (1 + λ2)(x2

2 + x2
3 )

4|t | ,

u(t,x) = x + x × L
2t

, L = (λ,0,0).

The next case is rank((ac − b2)Id + �2) = 2, implying ac − b2 = 0 and � 
= 0. We start
with a rotation to put � into the form (12). With a Galilei transformation (S2) we now cannot
eliminate the vector parameters completely, but we can achieve A2 = A3 = B2 = B3 = 0.

Now we have again two subcases. When a 
= 0, we can use the first component of the
Galilei transformation for A1 = 0. With a time shift we produce b = 0 and, thus, c = 0
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(because of ac = b2). Finally, by rescaling and by absorbing a common factor into the profile
ψ , we obtain a = 1 and B1 ∈ {0,1}.

In the second subcase a = 0, b = 0 follows and, thus, c 
= 0 (since α(t) would be iden-
tically equal to zero otherwise). Now, we produce B1 = 0 with the first component of the
Galilei transformation, and use rescaling as above for c = 1 and A1 ∈ {0,1}.
Normal form type 2a: parameters: λ 
= 0, B1 ∈ {0,1}

α(t) = t2,

g(t,x) = −λ2(x2
2 + x2

3 ) + B1(1 + 2tx1)

2t2
,

u(t,x) = tx + x × L + (B1,0,0)

t2
, L = (λ,0,0).

Normal form type 2b: parameters: λ 
= 0, A1 ∈ {0,1}
α(t) = 1,

g(t,x) = −λ2(x2
2 + x2

3 ) + A1(x1 − t2/2),

u(t,x) = x × L + t (A1,0,0), L = (λ,0,0).

If rank((ac − b2)Id + �2) = 1 holds, then we again start with a rotation to obtain (12).
Then 0 
= ac − b2 = λ2 (implying ac > 0) holds. With a Galilei transformation A = B1 = 0
can be achieved. A time shift produces b = 0, and a rescaling leads to a = c = 1 and |B| ∈
{0,1}.
Normal form type 1: parameters: |λ| = 1, B2

2 + B2
3 ∈ {0,1}

α(t) = t2 + 1,

g(t,x) = x2
1 + 2(λB3 − tB2)x2 − 2(λB2 + tB3)x3 − B2

2 − B2
3

2(t2 + 1)
,

u(t,x) = tx + x × L + (0,B2,B3)

t2 + 1
, L = (λ,0,0).

Finally, the situation is left where the matrix (ac − b2)Id + �2 vanishes and, thus, ac −
b2 = � = 0.

In the subcase a 
= 0, a time shift produces b = 0 and, as a consequence, c = 0. With
a Galilei transformation we eliminate A and with a rotation B = (B1,0,0) is obtained. A
rescaling gives a = 1 and B1 ∈ {0,1}.

For a = 0, b = 0 and c 
= 0 follow as for the type 2b. Now B = 0 and A = (A1,0,0) are
the result of a Galilei transformation and of a rotation, respectively. Rescaling gives c = 1
and A1 ∈ {0,1}.
Normal form type 0a: parameter: B1 ∈ {0,1}

α(t) = t2,

g(t,x) = −B1(1 + 2tx1)

2t2
,

u(t,x) = x
t

+ 1

t2
(B1,0,0).
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Normal form type 0b: parameter: A1 ∈ {0,1}
α(t) = 1,

g(t,x) = A1(x1 − t2/2),

u(t,x) = t (A1,0,0).

Actually, these last two types could be included in types 2a and 2b, respectively, by
permitting λ = 0 there.

2.2 The Two-Dimensional Case

Now the skew symmetric matrix always has the form

� =
(

0 λ

−λ 0

)
,

and we have ac−b2 +�2 = (ac−b2 −λ2)Id. Thus, there are only two cases concerning the
rank of this matrix. If the rank is two, A and B are eliminated by a Galilei transformation.

In the first subcase a 
= 0, a time shift produces b = 0 and rescaling as well as absorption
of a factor into ψ leads to a = 1, c ∈ {0,1,−1}, λ ∈ {0,1}.

For a = 0, b 
= 0, we achieve c = 0 by a time shift, and b = 1 by absorption of a factor.
In the third subcase a = b = 0, c 
= 0, we can obtain c = 1, λ = 1.

Normal form type 2a: parameters: c ∈ {0,1,−1}, λ ∈ {0,1}, c 
= λ2

α(t) = t2 + c,

g(t,x) = (c − λ2)|x|2
2(t2 + c)

,

u(t,x) = tx + �x
t2 + c

.

Normal form type 2b: parameter: λ ∈ R

α(t) = 2t,

g(t,x) = − (1 + λ2)|x|2
4t

,

u(t,x) = x + �x
2t

.

Normal form type 2c:
α(t) = 1,

g(t,x) = −|x|2
2

,

u(t,x) = �x, � =
(

0 1
−1 0

)
.

For ac − b2 = λ2, we have two subcases: For a 
= 0, we get A = 0 (Galilei), B = (B1,0)

(rotation), b = 0 (time shift), a = 1, c ∈ {0,1,−1}, B1 ∈ {0,1} (rescaling, absorption).
Finally, a = 0 implies b = λ = 0, c 
= 0. We then obtain B = 0 (Galilei), A = (A1,0)

(rotation), c = 1, A1 ∈ {0,1} (rescaling).
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Normal form type 0a: parameters: c ∈ {0,1}, B1 ∈ {0,1}, λ2 = c

α(t) = t2 + c,

g(t,x) = −B1(1 + 2tx1 + 2λx2)

2(t2 + c)
,

u(t,x) = tx + �x + (B1,0)

t2 + c
.

Normal form type 0b: parameter: A1 ∈ {0,1}
α(t) = 1,

g(t,x) = A1(x1 − t2/2),

u(t,x) = t (A1,0).

3 Visualization of 3D Vacuum Regions

We remark that—seeing ξ as independent velocity variable—the equilibrium distributions
F(t, ξ,x) = ψ(α(t)ξ + g(t,x)) depend on x only through g(t,x). We therefore visualize
the level sets

G(g0, t) := {x ∈ R
d : g(t,x) ≡ g0}.

In particular, for compactly supported ψ , where ψ(g) ≡ 0 if g ≥ gvac and supposing
α(t) > 0, the equilibria F(t, ξ,x) feature a region of vacuum with boundary G(gvac). The
subsequently discussed Figs. 1, 2, 3, 4, 5 and 6 show G(g0, t1) and G(g0, t2) for t1 < t2,
where G(g0, t1) is drawn in the brightest greylevel and G(g0, t2) is colored the darkest to-
wards the possible direction of vacuum.

Fig. 1 Hyperboloid G(−6, t)

for normal from type 3a with
λ = 2, c = 1, t1 = 0, t2 = 5
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Fig. 2 Hyperboloid G(1, t) for
normal from type 3a with λ = 2,
c = 1, t1 = 0, t2 = 7.5

Fig. 3 Ellipsoid G(9, t) for
normal from type 3a with
λ = 0.5, c = 1, t1 = 0, t2 = √

2

Remark 3.1 (3D normal form type 3a: hyperboloids, ellipsoids) The level sets G(g0, t) are
either hyperboloids for λ2 > c = 1 (Figs. 1, 2) or ellipsoids for λ2 < c = 1 (Fig. 3) and for
c = −1 (Fig. 4). Figure 1 shows expanding vacuum due to strong rotation around the x1 axis.
In Fig. 2 rotating particles expanding from the center pushing the vacuum aside. In Fig. 3
the particles spread out into all directions. Figure 4 for the case c = −1 shows an ellipsoid
of expanding vacuum. The outgoing velocities origins from a singularity at time t = 1.

Remark 3.2 (3D normal form type 2a: paraboloids, cylinders) The level sets G(g0, t) are
paraboloids or cylinders if, especially, B1 = 0 or A1 = 0 in type 2a or type 2b, respectively.
As example, see Fig. 5 for cylindrically rotating particles with vacuum possibly inside.



502 J Stat Phys (2007) 129: 493–507

Fig. 4 Ellipsoid G(−20, t) for
normal from type 3a with λ = 1,
c = −1, t1 = 1.2, t2 = 1.7

Fig. 5 Cylinder G(−2, t) for
normal form type 2a) with
λ = 1,B1 = 0, t1 = 2, t2 = 5

Remark 3.3 (3D Example Normal form type 0b: planes) Figure 6 shows G(g0, t) as travel-
ling planar fronts of particles.

4 Kinetic Profiles from Macroscopic Profiles

This section is concerned with the inversion of the relation (11) between microscopic and
macroscopic equilibrium profiles.
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Fig. 6 Planes G(0, t) for normal
from type 0b) with A1 = 2 at
times t1 = 0, t2 = 4.5

Lemma 4.1 Let ψ ∈ C(R) satisfy
∫ ∞

ξ0
|ξ |d/2|ψ(ξ)|dξ < ∞ for a d ∈ N and a (and, thus,

all) ξ0 ∈ R. Let φ(g) = |Sd−1|/d ∫ ∞
0 (2η)d/2ψ(η + g)dη as in (11). Then, for d even, φ ∈

Cd/2+1(R) and

ψ(ξ) = 1

cd

φ(d/2+1)(ξ) with cd = (−1)d/2+1|Sd−1|
d/2−1∏
j=1

(d − 2j).

For d odd, φ ∈ C(d+1)/2(R) and

ψ(ξ) = 1

cd

d

dξ

∫ ∞

ξ

φ((d+1)/2)(g)
dg√
g − ξ

(13)

with cd = π√
2
(−1)(d−1)/2|Sd−1|

(d−1)/2∏
j=1

(d − 2j).

Proof After the change of variable η + g = z in φ(g) and after doing k times a differentia-
tion, we obtain

φ(k)(g) = (−1)k|Sd−1|2d/2−1
k−1∏
j=1

(d/2 − j)

∫ ∞

g

(z − g)d/2−kψ(z) dz.

Thus, the claim for d even follows with k = d/2 and then one more differentiation. For d

odd, k = (d + 1)/2 gives

φ((d+1)/2)(g) = −cd

π

∫ ∞

g

ψ(ξ)√
ξ − g

dξ.

This is an integral equation of Abel type for ψ , which can be solved explicitly (see, e.g., [10])
giving (13). �
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Remark 4.1 It is interesting to note that nonnegativity of ψ implies nonnegativity of φ, but
not vice versa. On the other hand, the much stronger property of complete monotonicity
(φ ∈ C∞(R) and (−1)kφ(k) ≥ 0 for all k ≥ 1) is preserved both by (11) and its inverse.
For (not necessarily completely monotone) nonnegative ψ , φ satisfies this property for k ≤
d/2 + 1. However, for d = 3 the properties φ > 0, φ′ < 0, φ′′ > 0 are not sufficient for a
nonnegative ψ . The example, φ(g) = e−g(1−c sing) with |c| < 1/2 satisfies the above sign
conditions. Evaluation of (13) with d = 3 by numerical integration shows that for c close to
1/2 the kinetic profile takes negative values. For odd d a complete characterization of the
sets of functions φ determined by (11) with nonnegative ψ is missing.

5 Solutions of the 3D Euler Equations

A large set of solutions (ρ,u, T ) of the 3D Euler equations is given by setting

ρ(t,x) = −α(t)−3/2φ′(g(t,x)), T (t,x) = − φ(g(t,x))

α(t)φ′(g(t,x))
,

with an arbitrary function φ and choosing α, g, and u according to (7), (9), and (10), respec-
tively. Different qualitative behaviours are obtained for the normal forms of (7), (9), and
(10), derived in Sect. 2.

We start by discussing solutions with finite total mass

M =
∫

R3
ρ dx

and energy

E =
∫

R3

(
3

2
ρT + ρ

|u|2
2

)
dx.

Since the x-dependence of the density and the temperature is only through the quadratic
form g, it is easily seen that finite values of M and E can only be achieved if g is positive
definite, i.e., for the normal form type 3a, with λ2 < 1 = c. We then have

α(t) = t2 + 1, g(t,x) = x2
1 + (1 − λ2)(x2

2 + x2
3 )

2(t2 + 1)
,

u(t,x) = tx + x × L
t2 + 1

with L = (λ,0,0).

The velocity contains a contribution which is contracting towards the origin for negative t

and expanding for positive t and a contribution rotating around the x1-axis. The level sets of
g (and, thus, of ρ and T ) are (contracting and expanding) disc shaped ellipsoids, where the
flattening is due to the rotational part of the velocity. A straightforward computation gives

M = 2π
√

2

1 − λ2

∫ ∞

0
φ(ξ)

dξ√
ξ
, E = 2π

√
2

1 − λ2

(
1 + 2

1 − λ2

)∫ ∞

0
φ(ξ)

√
ξ dξ,

under the assumption that the integrals exist. The internal energy is given by

Ei(t) = 3

2

∫
R3

ρT dx = 6π
√

2

(t2 + 1)(1 − λ2)

∫ ∞

0
φ(ξ)

√
ξ dξ,
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which decays like t−2 as t → ∞.
Interesting choices of the profile φ include:

• The exponential φ(g) = e−g , giving a spatially constant temperature and an ’ellipsoidal
Gaussian’ for the density.

• Profiles with φ(g) = 0 for g ≥ g0, giving solutions with compact ellipsoidal spatial sup-
port contracting and expanding with time.

• Profiles with jumps in φ′, giving contact discontinuities along certain level sets of g(t,x).
• As an example combining both the previous cases: φ(g) = max{0,1 − g}, giving a con-

stant density inside the 1-level set of g(t,x), and vacuum outside.

In [12], Serre obtained global classical solutions by applying a local existence result of
Chemin [1] to a time-compactified version of the Makino–Ukai–Kawashima symmetrisation
(π = (ρT )1/(2+d), u, S = ln(ρ−2/dT ), see [9]) under the assumption of initial data with
“small” initial pressure π(0), with “small” initial velocity u(0) directed to make the gas
expand, and with initial entropy S(0) “close” to a constant (“small” and “close” in the sense
of Hm, with m > d/2 + 1, i.e. Hm ↪→ C1).

Contrary, the above explicit solutions can have “large” pressure and “far-from-constant”
entropy and for negative times the velocity may even contract the gas.

We remark that compactly supported profiles φ cannot give rise to classical solutions in
the Makino–Ukai–Kawashima variables. That would contradict a result in [9] saying that
classical compactly supported solutions do not change their support and have only a finite
life-span (except for the zero solution). Indeed, one can check that S ′ � 2+d

2
φ′′
−φ′ + φ′

φ
is

unbounded at the boundary of the support of φ. The above solutions change their support in
time, which seems physically more relevant.

Moreover, non-compactly supported profiles φ have either the entropy S � ln(φ/

(−φ′)(2+d)/d) or S ′ unbounded as |x| → ∞. For instance, the Maxwellian profile φ(g) � e−g

has S � g(t,x) → ∞ as |x| → ∞).
Thus, the existence theory of classical solutions as in [12] does not cover the above

explicit solutions, although for large times the gas expands and pressure and entropy become
small within any compact subset of the support. Moreover, nothing is known about the
stability of the above solutions.

Nevertheless, some stability results are available on the kinetic level. In [8], the authors
considered the cometary flow equation (1) linearized around time and space independent
equilibria F(|v|2/2). Provided that F ′ < 0 (which ensures a well-defined entropy functional)
and technical assumptions, they showed exponential convergence to the unique equilibrium
preserving all even moments and the momentum from the initial data. Convergence to time-
and space dependent equilibria rotating within symmetric, specular reflecting spheres was
recently shown for the Boltzmann equation in [13, Theorem 64] and is expected to carry
over to the linearized cometary flow equation.

However, for the nonlinear cometary flow equation convergence to equilibria remains an
open question, where it is already unclear how to identify the equilibrium from the initial
data when only mass, momentum, and energy are preserved.

Finally, the internal energy Ei decays like t−2 as t → ∞ as predicted in [1] unchanged
by all the possible lacks of regularity between the above explicit solutions and the classical
solutions in the Makino–Ukai–Kawashima variables.

Of course it is an interesting question if these profiles can be derived from a kinetic
profile ψ . It is easily seen that the exponential φ corresponds to an exponential ψ . A smooth
φ with compact support corresponds to a ψ with compact support. Lemma 4.1 shows that
macroscopic profiles derived from continuous microscopic profiles are in C2(R) meaning
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that a profile φ with jumps in the first derivative does not correspond to a regular kinetic
profile ψ .

Another interesting class of solutions corresponds to type 3a with c = −1, i.e.,

α(t) = |t2 − 1|, g(t,x) = −x2
1 + (1 + λ2)(x2

2 + x2
3 )

2|t2 − 1| ,

u(t,x) = tx + x × L
t2 − 1

with L = (λ,0,0).

Again, bounded total mass is possible,

M = 2π
√

2

1 + λ2

∫ ∞

0
[φ(−∞) − φ(−ξ)] dξ√

ξ
,

but the total energy is necessarily infinite. The level sets are now cigar shaped ellipsoids,
where again the distortion compared to a sphere is caused by rotation.

The main difference to case c = 1 is that these solutions are not eternal. Actually, the time
intervals (−∞,−1), (−1,1), and (1,∞) should be considered separately. The singularities
at t = ±1 are of concentration type. The three time intervals correspond to:

• A solution originating from a spread out state and concentrating at t = −1
• A solution coming out of a concentrated state at t = −1 and concentrating again after

finite time at t = 1, and
• A solution coming out of a concentrated state at t = 1 and spreading out as t → ∞

Note that, for smooth φ these solutions correspond to completely harmless equilibrium
solutions of the cometary flow equation, which are smooth at t = ±1. They just loose their
integrability with respect to the velocity at these two instants. Thus, the kinetic solution can
be continued smoothly through t = ±1. This provides a connection between the three time
intervals above, which is, however, questionable if only the Euler equations are considered.

Singularities at t = 0 with the same qualitative behaviour are featured by solutions of
type 3b. We omit a detailed discussion.

All other solution types have infinite total mass and energy. Type 2a solutions concentrate
along the x1-axis at t = 0. The set of type 2b solutions contains (with A1 = 0) the only
nontrivial steady state solutions (with a purely rotational velocity). Finally, type 0 solutions
have the form of planar waves, except type 0a with B1 = 0, leading to

ρ = a

t3
, T = b

t2
, u = x

t
,

with arbitrary constants a and b.
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